# Structure of Barium Tetrakis[oxalato(2-)- $O^{1}, O^{2}$ ]uranium(IV) Octahydrate 

By M. R. Spirlet<br>Physique Expérimentale, B5, Université de Liège au Sart-Tilman, B4000 Liège, Belgium<br>J. Rebizant<br>Commission of the European Communities, JRC Karlsruhe, Postfach 2266, D-7500 Karlsruhe, Federal Republic of Germany

and B. Kanellakopulos and E. Dornberger
Institut für Heisse Chemie, Kernforschungszentrum, D-7500 Karlsruhe, Federal Republic of Germany
(Received 24 February 1986; accepted 25 July 1986)


#### Abstract

Ba}_{2} \mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}, M_{r}=1008.91\), monoclinic, $\quad C 2 / c, \quad a=10.388$ (2),$\quad b=28.703$ (3), $\quad c=$ 9.261 (1) $\AA, \beta=123.55(1)^{\circ}, V=2301$ (1) $\AA^{3}, Z=4$, $D_{x}=2.912 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $101.366 \mathrm{~cm}^{-1}, \quad F(000)=1840, \quad T=295(1) \mathrm{K}, \quad R=$ 0.029 for 1823 observed reflections. The U atom is nine-coordinated to four oxalate groups acting as bidentate ligands and to one water molecule. The coordination geometry about the U atom is between tricapped trigonal prism and capped square antiprism. The crystal packing involves a remarkable network of $\mathrm{Ba}-\mathrm{O}$ interactions and $\mathrm{O}-\mathrm{O}$ hydrogen bonds.


Introduction. The present work forms part of a study on the stereochemistry of highly coordinated actinide(IV) complexes. Among oxalate derivatives, structural data only exist for $\mathrm{K}_{4}\left[\mathrm{Th}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Akhtar \& Smith, 1975) and for the two polymorphs of the uranium analogue $\mathrm{K}_{4}\left[\mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Favas, Kepert, Patrick \& White, 1983). In both complexes the actinide ion is ten-coordinate with bidentate and bridging quadridentate oxalate ligands, so that the structure consists of infinite polymeric chains parallel to a crystallographic axis. We investigate here the structure of a novel oxalato complex of uranium(IV) with barium as cation, considering the possibility of a new stoichiometry or stereochemical type.

Experimental. Single crystals of $\mathrm{Ba}_{2} \mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ obtained by reaction of a solution of $\mathrm{BaCl}_{2}$ in $3 M$ hydrochloric acid and $1 M$ oxalic acid with uranium(IV) oxalate hexahydrate, $\mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Intensity data recorded at 295 (1) K on an Enraf-Nonius CAD-4 X-ray diffractometer, graphite-monochromated Mo $K \alpha$ radiation. Crystal size $0.25 \times$ $0.30 \times 0.35 \mathrm{~mm}$. Cell parameters refined by least squares from angle data of 25 reflections $(10<$ $2 \theta<19^{\circ}$ ). Systematic absences consistent with space
groups $C c$ and $C 2 / c .2405$ reflections collected $(\theta-2 \theta$ scan mode) in range $4 \leq 2 \theta \leq 50^{\circ}$, index range $h-9 /$ $+12, k 0 /+34, l 0 /-10,2167$ considered observed $\left[I>\sigma(I)\right.$, averaged to 2083 unique reflections ( $R_{\text {int }}$ $=0.01$ ). Intensities of three standard reflections measured at 30 min intervals showed no significant deviations from mean. Intensities corrected for Lorentz-polarization effects; empirical absorption correction (transmission factors range from 53.05 to $99.86 \%$ ). Structure solved by direct methods. Position of U and Ba atoms deduced from $E$ map. Successive difference Fourier synthesis and LS refinement revealed the position of the light atoms except H and permitted the exclusion of the alternative non-centrosymmetric space group Cc. Full-matrix least-squares refinement [minimizing $\sum w(\Delta F)^{2}$ ] on 1823 independent reflections with $F^{2} \geq 3 \sigma\left(F^{2}\right), w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}, \quad \sigma\left(F_{o}\right)=$ $\sigma\left(F_{o}^{2}\right) / 2 F_{o}, \quad \sigma\left(F_{o}^{2}\right)=\left[\sigma^{2}(I)+(A)^{2}\right]^{1 / 2} / \mathrm{Lp}, \quad A \quad$ (the ignorance factor) $=0.04$. Anisotropic thermal parameters except for water $O$ atoms. An attempt to treat the water O atoms anisotropically did not result in any significant improvements of the $R$ factors and some of the thermal tensors did not remain positive definite. Final agreement factors: $R=0.029, w R=0.046$, $S=1.698, \quad(\Delta / \sigma)_{\max }=0.01, \Delta \rho$ in final difference Fourier map within +1.8 and $-1.3 \mathrm{e}^{-3} \AA^{-3}$. Atomic scattering factors and anomalous-dispersion terms from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1979) SDP programs.

Discussion. Final atomic parameters are given in Table 1 and selected bond distances and angles in Table 2.*

[^0]Table 1. Atomic positional and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

| $B_{\text {eq }}=\frac{4}{3}$ | $\text { ,1) }+b^{2} B(2,2)+c^{2} B(3,3)+a b+a b(2, \cos \beta B(1,3)+b c \cos \alpha B(2,3)] . ~ l$ |  |  | $\alpha B(1,2)+$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| U | 0.500 | $0 \cdot 10745$ (1) | 0.250 | 1.518 (7) |
| $\mathrm{Ba}(1)$ | 0.000 | 0.22776 (2) | 0.250 | 2.07 (1) |
| $\mathrm{Ba}(2)$ | 0.500 | 0.46579 (2) | 0.250 | 1.84 (1) |
| C(1) | 0.4064 (6) | $0 \cdot 1893$ (2) | 0.4164 (7) | $2 \cdot 2$ (1) |
| $\mathrm{O}(1)$ | 0.3582 (5) | 0.1679 (2) | 0.2747 (5) | 2.8 (1) |
| $\mathrm{O}\left(1^{\prime}\right)$ | 0.3354 (5) | 0.2175 (2) | 0.4447 (5) | 2.7 (1) |
| C(2) | 0.5738 (7) | 0.1759 (3) | 0.5614 (7) | 2.4 (1) |
| $\mathrm{O}(2)$ | 0.6387 (4) | $0 \cdot 1458$ (2) | 0.5224 (5) | $2 \cdot 1$ (1) |
| $\mathrm{O}\left(2^{\prime}\right)$ | 0.6332 (6) | $0 \cdot 1945$ (2) | 0.7068 (6) | 4.6 (1) |
| C(3) | 0.3051 (6) | 0.0529 (2) | 0.3752 (6) | 1.7 (1) |
| $\mathrm{O}(3)$ | 0.4277 (5) | 0.0754 (2) | 0.4388 (5) | 2.4 (1) |
| $\mathrm{O}\left(3^{\prime}\right)$ | 0.2654 (5) | 0.0272 (2) | 0.4529 (5) | 2.6 (1) |
| C(4) | 0.1928 (6) | 0.0570 (2) | $0 \cdot 1754$ (6) | 1.8 (1) |
| $\mathrm{O}(4)$ | 0.2449 (4) | 0.0772 (2) | 0.0961 (5) | $2 \cdot 2$ (1) |
| $\mathrm{O}\left(4^{\prime}\right)$ | 0.0622 (5) | 0.0410 (2) | $0 \cdot 1050$ (5) | $3 \cdot 1$ (1) |
| $\mathrm{O}(W 1)$ | 0.500 | 0.0179 (3) | 0.250 | $2 \cdot 8(1)^{*}$ |
| $\mathrm{O}(W 2)$ | 0.500 | 0.3675 (5) | 0.250 | 7.0 (3)* |
| $\mathrm{O}(W 3)$ | 0.7534 (6) | 0.0639 (3) | 0.7697 (7) | 4.5 (1)* |
| $\mathrm{O}(W 4)$ | 0.118 (1) | 0.1503 (5) | 0.474 (1) | 12.6 (4)* |
| $\mathrm{O}(W 5)$ | $0 \cdot 106$ (2) | $0 \cdot 2163$ (5) | -0.003 (2) | $16 \cdot 8$ (6)* |

Table 2. Uranium-ligand distances and shape characteristics of the coordination polyhedron about the U atom

Superscript (i) refers to the twofold symmetry operation: $-x, y$, $\frac{1}{2}-z$.
(a) U-O bond distances ( $\AA$ )

|  |  |  |  |
| :--- | :---: | :--- | :--- |
| $\mathrm{U}-\mathrm{O}(1)$ | $2.366(4)$ | $\mathrm{U}-\mathrm{O}(3)$ | $2.433(4)$ |
| $\mathrm{U}-\mathrm{O}(2)$ | $2.374(3)$ | $\mathrm{U}-\mathrm{O}(W 1)$ | $2.569(6)$ |
| $\mathrm{U}-\mathrm{O}(4)$ | $2.374(4)$ |  |  |
| (b) Lengths of the polyhedron edges $(\mathrm{A})$ |  |  |  |
| $\mathrm{O}(2)-\mathrm{O}(1)$ | $2.601(5)$ | $\mathrm{O}(2)-\mathrm{O}\left(1^{\prime}\right)$ | $2.841(5)$ |
| $\mathrm{O}(3)-\mathrm{O}(4)$ | $2.649(5)$ | $\mathrm{O}(1)-\mathrm{O}(3)$ | $2.944(6)$ |
| $\mathrm{O}(2)-\mathrm{O}(3)$ | $2.760(5)$ | $\mathrm{O}(1)-\mathrm{O}(4)$ | $2.958(6)$ |
| $\mathrm{O}(W 1)-\mathrm{O}(4)$ | $2.788(5)$ | $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$ | $3.222(6)$ |
| $\mathrm{O}(W 1)-\mathrm{O}(3)$ | $2.71(5)$ | $\mathrm{O}(3)-\mathrm{O}(4)$ | $3.590(5)$ |
| $\mathrm{O}(2)-\mathrm{O}\left(3^{\prime}\right)$ | $2.831(5)$ |  |  |

(c) $\delta$ angles $\left({ }^{\circ}\right):$ Selected dihedral angles between adjacent polytopal faces compared with ideal values taken from Drew (1977)

|  | Values <br> observed | Ideal values in |  |  |
| :---: | :---: | :---: | :---: | :---: |

(d) Dihedral angles between LS planes $\left({ }^{\circ}\right)$

Maximum deviation from LS plane ( $\AA$ )
Plane 1: $O(1), O(3), O(4)$
Plane 2: $O\left(1^{1}\right), O\left(3^{i}\right), O\left(4^{i}\right)$
Plane 3: $O(W 1), O(4), O\left(2^{i}\right), O\left(3^{\prime}\right)$
Plane 4: $O\left(4^{i}\right), O\left(1^{i}\right), O(1), O\left(2^{i}\right)$
Plane 5: $O(3), O(4), O\left(3^{i}\right), O\left(4^{\prime}\right)$
Plane 6: $O(1), O(2), O\left(2^{i}\right), O\left(1^{\prime}\right)$
$0.16(3)$
$0.04(2)$
$0.03(2)$
$0.32(2)$

Dihedral angles
1/2 $8.1^{(2)}$
$\begin{array}{ll}3 / 4 & 3 \cdot 1 \text { (2) }\end{array}$
$5 / 6 \quad 0.0$ (2)

The crystal structure is made up of independent monomeric $\left[\mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right]^{4-}$ anions (Fig. 1). Ba cations and water molecules occupy the spaces between the anions and support the crystal packing through $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ (probable hydrogen bonding) interactions (see Fig. 3).

In the $\left[\mathrm{U}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right]^{4-}$ anion, as illustrated in Fig. 1 , the oxalate groups are coordinated as bidentate ligands to the $U$ atom which is also linked to one water O atom, having therefore a coordination number of nine.


Fig. 1. The $\left[\mathrm{U}_{\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]^{4-} \text { anion. }}\right.$


Fig. 2. The coordination polyhedron about the U atom.

Table 3. $\mathrm{Ba}-\mathrm{O}$ bond distances and $\mathrm{O}-\mathrm{O}$ close contacts $(\AA)(<3 \cdot 10 \AA)$

| $\mathrm{Ba}(1)-\mathrm{O}\left(2^{\prime \prime} \mathrm{li}\right)$ | $2.769(5)$ | $\mathrm{Ba}(2)-\mathrm{O}\left(3^{\prime \prime}\right)$ | $2.917(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ba}(1)-\mathrm{O}\left(1^{\prime \prime}\right)$ | $2.837(4)$ | $\mathrm{Ba}(2)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$ | $2.986(4)$ |
| $\mathrm{Ba}(1)-\mathrm{O}\left(1^{\prime \prime}\right)$ | $2.921(4)$ | $\mathrm{Ba}(2)-\mathrm{O}\left(4^{\text {iv }}\right)$ | $3.042(4)$ |
| $\mathrm{Ba}(1)-\mathrm{O}(W 4)$ | $2.82(1)$ | $\mathrm{Ba}(2)-\mathrm{O}(W 3)$ | $2.800(5)$ |
| $\mathrm{Ba}(1)-\mathrm{O}(W 5)$ | $3.11(1)$ | $\mathrm{Ba}(2)-\mathrm{O}(W 2)$ | $2.82(1)$ |
| $\mathrm{Ba}(2)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$ | $2.799(4)$ |  |  |
|  |  |  |  |
| $\mathrm{O}(1)-\mathrm{O}(W 5)$ | $2.82(1)$ | $\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}\left(W 1^{\text {sii }}\right)$ | $2.788(5)$ |
| $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(W 4)$ | $3.09(1)$ | $\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}\left(W 3^{\text {viii }}\right)$ | $2.881(6)$ |
| $\mathrm{O}(2)-\mathrm{O}(W 3)$ | $3.028(7)$ | $\mathrm{O}(4)-\mathrm{O}(W 1)$ | $2.788(5)$ |
| $\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(W 4^{\text {vi }}\right)$ | $2.93(1)$ | $\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}\left(W 3^{\text {ix }}\right)$ | $3.059(6)$ |
| $\mathrm{O}(3)-\mathrm{O}(W 1)$ | $2.791(5)$ | $\mathrm{O}(W 2)-\mathrm{O}(W 5)$ | $3.07(2)$ |
| $\mathrm{O}(3)-\mathrm{O}(W 3)$ | $3.080(8)$ |  |  |

Symmetry code: (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (v) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (vi) $1-x, y, \frac{3}{2}-z$; (vii) $x,-y, \frac{1}{2}+z$; (viii) $1-x, y, 1-z$; (ix) $-1+x$, $y,-1+z$.

The coordination polyhedron, illustrated in Fig. 2, has imposed $C_{2}$ symmetry, the U and the water $\mathrm{O}[\mathrm{O}(W 1)]$ atoms lying on a crystallographic twofold axis. Its geometry (Table 2) may be described as intermediate between the tricapped trigonal prism (TCTP) of symmetry $D_{3 h}$ and the capped square antiprism (CSAP) of symmetry $C_{4 v^{*}}$. The distortion from TCTP towards CSAP is shown by the $\delta$ angles (Drew, 1977) reported in Table 2, and especially by the three $\delta$ angles over the $v$ edges. Two possible CSAP's can be derived from the TCTP depending on which of the capping atoms $[\mathrm{O}(W 1)$ or $\mathrm{O}(2)]$ in the TCTP polyhedron is chosen as capping atom in the CSAP. One would expect the CSAP with $\mathrm{O}(W 1)$ as capping atom to be the most appropriate choice, but geometrical features (Table 3) indicate that the distortion is towards the CSAP, capped with the oxalate $\mathrm{O}(2)$ atom [c111 isomer among the seven isomers proposed for the form $M$ (unidentate)(bidentate) ${ }_{4}$ by Drew (1977)]. This observation is in agreement with the results of calculations in the hard-sphere model (Burgi, 1973), which predict that $s_{1}$ edges are unsuitable for a bidentate ligand.

The crystal packing is illustrated in Fig. 3. $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ (probable hydrogen bonds) contacts are reported in Table 3. There are two symmetrically non-equivalent Ba atoms per asymmetric unit. They interact with the oxalate O atoms which are not coordinated to the U atom. The oxalate groups thus behave as quadridentate


Fig. 3. View of the unit cell along the $c$ axis.
ligands, acting as bridges between the U and Ba atoms. The two Ba atoms are also coordinated to the nearest-neighbour water O atoms and reach coordination number ten $[\mathrm{Ba}(1)]$ or eleven $[\mathrm{Ba}(2)]$. The high temperature factors of the water O atoms $\mathrm{O}(W 4)$ and $\mathrm{O}(W 5)$ indicate some disorder in the relatively large holes of the packing.

## References

Akhtar, M. N. \& Smith, A. J. (1975). Acta Cryst. B31, 1361-1366.
Burgi, H. B. (1973). Inorg. Chem. 12, 2321-2325.
Drew, M. G. B. (1977). Coord. Chem. Rev. 24, 179-275.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
favas, M. C., Kepert, D. L., Patrick, J. M. \& White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 571-581.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

# Structure of trans-Diiodobis(triphenylstibine)palladium(II) and Observations on the Pd-I Bond Length 

By M. Mathew and G. J. Palenik<br>Center for Molecular Structure, Chemistry Department, University of Florida, Gainesville, FL 3261 1, USA

and C. A. McAuliffe<br>Institute of Science and Technology, The University of Manchester, PO Box 88, Manchester M60 1QD, England

(Received 10 February 1986; accepted 28 July 1986)


#### Abstract

PdI}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}\right\}_{2}\right], M_{r}=1066 \cdot 34\), triclinic, $P \overline{1}, a=10.005$ (1), $b=10.121$ (1), $c=10.208$ (1) $\AA$, $\alpha=105.70(1), \quad \beta=93.53(1), \gamma=116.96(1)^{\circ}, \quad V=$ 866.3 (2) $\AA^{3}, Z=1, F(000)=500, D_{x}=2.044, D_{m}$ $=2.0 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=38.5 \mathrm{~cm}^{-1}$. Final $R=0.054, w R=0.050$ for 2134 reflections with $I \geq 2 \sigma(I)$. Room temperature. The title compound is a centrosymmetric four-coordinate complex with no


unusually short intermolecular contacts. The $\mathrm{Pd}-\mathrm{I}$ distance of 2.590 (1) $\AA$ is in agreement with the average of 2.596 (12) $\AA$ from 19 reported Pd-I distances when $\mathrm{I}, \mathrm{N}$ or S is the trans atom. The $\mathrm{Pd}-\mathrm{I}$ distance increases to 2.653 (11) $\AA$ when P, As or C is the trans atom. A trans effect causes the $\mathrm{Pd}-\mathrm{Sb}$ distance of 2.578 (1) $\AA$ to be significantly longer than in the only other known $\mathrm{Pd}-\mathrm{Sb}$ complex [2.506 (1) and 2.527 (1) $\AA$ ].
© 1987 International Union of Crystallography


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43302 ( 15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

